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Abstract Heat conduction in a rectangular parallelepiped that is in steady motion relative to a fluid is
studied in this paper. The governing equation consists of the standard heat equation plus lower-order
derivative terms with the space variables that represent the effects of the solid flow. The presence of the
first-order-derivative terms with the space variables renders the spatial part of the governing differenial
equation non-self-adjoint and care must be exercised in defining the new Green’s functions to be used
in representing the solutions of initial- and boundary-value problems. It is illustrated how the Green’s
functions may be constructed and how solutions of initial- and boundary-value problems may be obtained
that lead to numerical results. Convergence properties of the solutions are also discussed.

Keywords Heat conduction · Non-self-adjoint operators · Green’s functions

1 Introduction

In this paper we study heat conduction in a solid in steady motion relative to a fluid. We take the solid to
be a rectangular parallelepiped with dimensions 0 < x < L1, 0 < y < L2, and 0 < z < L3. The solid is
assumed orthotropic and has its principal axes coinciding with the coordinate axes. Initial and boundary
conditions, as well as internal heat generation, are considered. The heat-conduction problem to be studied
here is based on a model equation which consists of the standard heat equation plus lower-order derivative
terms representing the effects of the solid flow. The presence of the lower order derivative terms in the
governing equation makes the spatial part of the differential operator non-self-adjoint. The meaning of this
”non-self-adjointness” of differential operators is explained in Sect. 2 where a brief review of the relevant
operator theory is presented. We shall introduce in Sect. 2 notions of non-self-adjoint operators as they
may be relevant to our present work. We shall introduce generalized versions of the Green’s functions
G and their adjoints G∗, identify the appropriate boundary conditions, show how they may be used in
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the representation of the solutions of the initial- and boundary-value problems and finally, show how to
construct the Green’s functions so we can deal with this initial-boundary-value heat-conduction problem
with solid flow. For background materials on Green’s functions for the classical heat equation we refer the
readers to Morse and Feshbach [1, Chapter 7]. For background materials on heat conduction in general
we refer the readers to Carlslaw and Jaeger [2, Chapters 1–12], Ozisik [3, Chapters 1–6] and Beck et al. [4,
Chapters 1–4, 6].

The derivation of the representation for the solutions leads us to consider the questions of appropriate
boundary conditions that the Green’s functions and their adjoints must satisfy. The appropriateness of
the boundary conditions on G and G∗ is assured by requiring that the boundary integrals be uniquely
determined by the given boundary data for the temperature of the first kind, the second kind or the third
kind. Integral representation of solutions in terms of initial and boundary data as well as volumetric energy
generation, with the Green’s function as the kernel, are given in Sect. 3. Discussions of boundary conditions
for the Green’s functions are given in Sect. 4.

In Sect. 5 we show how to construct Green’s functions by using the large time eigenfunctions of the
Green’s functions and their adjoints. Section 6 is devoted to two example problems and the related numer-
ical work. Questions on the convergence properties of the Green’s function method presented here will
also be discussed in Sect. 6. Section 7 contains further discussions and concluding remarks.

2 Formulation of the problem

We consider in this section the formuation of the problem in terms of the Green’s function and the initial
and boundary data of the problem. The governing equation for heat conduction in a solid in steady motion
to a fluid is taken, for example, as in [4]

LT(x, y, z, t) ≡ kx
∂2T
∂x2 + ky

∂2T
∂y2 + kz

∂2T
∂z2 − ρc

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

)
= −g̃(�x, t), t > 0, (1)

where L stands for the differential operator on the left-hand side of the equation, kx, ky, and kz are the
thermal conductivities in the x-, y-, and z-directions, respectively, ρ is density, c is specific heat, g̃(�x, t)
represents the volumetric energy generation, and �u = (u, v, w) denotes the uniform relative velocity of the
moving solid which does not vanish. We allow the thermal conductivities to be unequal so that the solid
may be orthotropic.

We have the initial condition for the temperature

T(�x; 0) = f (x, y, z) = given, (2)

and, on the bounding surfaces x=0 and x = L1, y = 0 and y = L2, and z=0 and z = L3 boundary conditions
of the first kind (Dirichlet), the second kind (Neumann) or the third kind (Robin) are posed.

Let φ(x) and ψ(x) be any two smooth differentiable functions of x, 0 < x < a, defined in some function
space S, say, the space C2 of all twice continuously differentiable functions and let L be a linear differential
operator defined on C2. We start with the integral∫ a

0
ψ(x)Lφ(x)dx. (3)

We now bring all the differentiations in Lφ(x) to the function ψ by repeated integrations by parts. This
results in∫ a

0
ψ(x)Lφ(x)dx =

∫ a

0
φ(x)Mψ(x)dx + · · · (4)

for some linear differential operator M and where “· · · ” stands for boundary terms evaluated at the bound-
aries x = 0 and at x = a. We shall call M the formal adjoint (operator) of L and vice versa. It is clear that
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if M is the formal adjoint of L, then L is the formal adjoint of M. If the functions φ and ψ are further
assumed to lie in some subspace of S, say, S0 of functions that vanish at x = 0 and x = a so that all the
boundary terms drop out, we then say that L and M are the adjoint of each other. If L = M, the operators
are said to be self-adjoint.

For a second-order differential operator L given by

L = α0
d2

dx2 + β0
d

dx
+ γ0, (5)

where α0,β0, and γ0 are all constant, we have

M = α0
d2

dx2 − β0
d

dx
+ γ0. (6)

It is seen that L and M can not be self-adjoint unless β0 = 0. They are formally self-adjoint if β0=0, and
are self-adjoint if all boundary terms drop out as a result of assumed homogeneous boundary conditions.
Self-adjoint operators have many useful and important properties.

We observe that the differential operator L in our present problem is of the second order with constant
coefficients. L thus can not be self-adjoint unless the first derivatives terms of T with respect to the spatial
variables all drop out, which would imply that u = v = w = 0 and there is no solid motion. Thus, the
operator L and hence the problem is non-self-adjoint.

Associated with Eq. 1 is the Green’s function G = G(�x, t; �x′, τ) that satisfies the equation

LG ≡ kx
∂2G
∂x2 + ky

∂2G
∂y2 + kz

∂2G
∂z2 − ρc

(
∂G
∂t

+ u
∂G
∂x

+ v
∂G
∂y

+ w
∂G
∂z

)

= −ρcδ(x − x′)δ(y − y′)δ(z − z′)δ(t − τ), t > τ , (7)

G ≡ 0, τ > t. (8)

We mention that G gives the thermal effect at the location �x at time t that is caused by a point impulsive
source at �x′ at time τ (Table 1).

The adjoint Green’s function G∗(�x, t; �x′, τ), of G(�x, t; �x′, τ) is defined by

G∗(�x, t; �x′, τ) = G(�x, −t; �x′, −τ) (9)

We note that G and G∗ both depend on the parameters (u, v, w) which change signs when there is a time
reversal. Using (9) and with �u → −�u, we can show that G∗ satisfies

L∗G∗ ≡ kx
∂2G∗

∂x2 + ky
∂2G∗

∂y2 + kz
∂2G∗

∂z2 + ρc
(
∂G∗

∂t
+ u

∂G∗

∂x
+ v

∂G∗

∂y
+ w

∂G∗

∂z

)

= −ρcδ(�x − �x′)δ(t − τ)), t < τ , (10)

G∗ ≡ 0, τ < t, (11)

where the operator L∗ is defined by the left-hand side of Eq. (10) above. The adjoint Green’s function G∗
gives the thermal effect at �x′ and τ due to a point impulsive source at �x and t travelling backwards in time.

In Appendix A we shall, by using Eqs. 7, 8 and 10, 11, prove the so-called “reciprocity property” of G
and G∗ given as in Eq. 12 or, equivalently, in Eq. 13 below

G(�x, t; �x′, τ) = G(�x′, −τ ; �x, −t), (12)

G(�x, t; �x′, τ) = G∗(�x′, τ ; �x, t). (13)

This reciprocity property is useful as it enables us to derive the following equations for G and G∗ regarded
as functions of (x′, y′, z′, τ)

kx
∂2G
∂x′2 + ky

∂2G
∂y′2 + kz

∂2G
∂z′2 + ρc

(
∂G
∂τ

+ u
∂G
∂x′ + v

∂G
∂y′ + w

∂G
∂z′

)
= −ρcδ(�x − �x′)δ(t − τ), t > τ , (14)

G ≡ 0, τ > t, (15)
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Table 1 Nomenclaure

c Specific heat
D = ρcuL

kx
, Dimensionless constant = Pe

2
g̃(�(x), t) Volume energy generation
Pe Peclet number
FX , HX , FY , . . . Spatial eigenfunctions in Green’s functions G and G∗
GX , GY , GZ One-dimensional Green’s functions for the temperature
G∗

X , G∗
Y , G∗

Z Adjoint Green’s functions of GX , GY , and GZ
G(x, y, z, t, x′, y′, z′, τ) Three-dimensional Green’s function
kx, ky, kz Thermal conductivities in the x-, y-, and z-directions
q Heat flux
q0 Prescribed surface heat flux
T(x,y,z,t) Temperature
Ts(x, y, z) Steady state temperature
Tc.t. Complementary transient temperature
T0 Prescribed surface temperature
�(u) = (u, v, w) Solid velocity relative to that of the fluid
R Eigenvalue parameter in the x-direction

Greek

α Thermal diffusivity
κ , λ Eigenvalue parameters in the x-direction
μ, γ Eigenvalue parameters in the y-direction
η Eigenvalue parameter in the z-direction
ρ Density
σ = t − τ , cotime

kx
∂2G∗

∂x′2 + ky
∂2G∗

∂y′2 + kz
∂2G∗

∂z′2 − ρc
(
∂G∗

∂τ
+ u

∂G∗

∂x′ + v
∂G∗

∂y′ + w
∂G∗

∂z′

)
= −ρcδ(�x − �x′)δ(t − τ), t < τ ,

(16)

G∗ ≡ 0, t > τ . (17)

We shall use Eqs. 14 through 17 above to derive integral representations for the solutions in the next
section.

3 Representation of solutions

We now derive integral representations for solutions of initial- and boundary-value problems in terms of
the Green’s functions and the given data. We rewrite Eq. 1 in terms of (x′, y′, z′, τ).

kx
∂2T
∂x′2 + ky

∂2T
∂y′2 + kz

∂2T
∂z′2 − ρc

(
∂T
∂τ

+ u
∂T
∂x′ + v

∂T
∂y′ + w

∂T
∂z′

)
= −g̃(�x′, τ). (18)

We multiply Eq. 14 by T(x′, y′, z′, τ). We then multiply Eq. 18 by G(x, y, z, t; x′, y′, z′, τ), here treated as a
function of (x′, y′, z′, τ) that satisfies Eq. 14. We subtract these two equations, and integrate the resulting
equation with respect to x′ from 0 to L1, with respect to y′ from 0 to L2, with respect to z′ from 0 to L3,
and with respect to τ from 0 to t. We have∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0

(
kx

(
T
∂2G
∂x′2 − G

∂2T
∂x′2

)
+ ky

(
T
∂2G
∂y′2 − G

∂2T
∂y′2

)
+ kz

(
T
∂2G
∂z′2 − G

∂2T
∂z′2

) )
dx′dy′dz′dτ

+ ρc
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0

( (
T
∂G
∂τ

+ G
∂T
∂τ

)
+ u

(
T
∂G
∂x′ + G

∂T
∂x′

)
+ v

(
T
∂G
∂y′ + G

∂T
∂y′

)
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+w
(

T
∂G
∂z′ + G

∂T
∂z′

))
dx′dy′dz′dτ =

∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0
Gg̃dx′dy′dz′dτ

−ρc
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0
T(x′, y′, z′, τ)δ(x − x′)δ(y − y′)δ(z − z′)δ(t − τ)dx′dy′dz′dτ . (19)

It follows that we have

ρcT(x, y, z, t) = −
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0

(
kx

(
T
∂2G
∂x′2 − G

∂2T
∂x′2

)
+ ky

(
T
∂2G
∂y′2 − G

∂2T
∂y′2

)

+kz

(
T
∂2G
∂z′2 − G

∂2T
∂z′2

) )
dx′dy′dz′dτ

−ρc
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0

(
∂

∂τ
(GT)+ u

∂

∂x′ (GT)+ v
∂

∂y′ (GT)+ w
∂

∂z′ (GT)
)

dx′dy′dz′dτ

+
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0
Gg̃(�x′, τ)dx′dy′dz′dτ . (20)

Let us examine the terms in the above equation. The term
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0
Gg̃(�x′, τ)dx′dy′dz′dτ . (21)

denoted by Ig, represents the effect of volume energy generation. The term

− ρc
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0

∂

∂τ
(GT)dx′dy′dz′dτ = −ρc

∫ L3

0

∫ L2

0

∫ L1

0
(GT)|t0dx′dy′dz′

= ρc
∫ L3

0

∫ L2

0

∫ L1

0
(GT)

∣∣
τ=0dx′dy′dz′ (22)

as G vanishes at the upper limit τ = t(= t+). This term, denoted by Iin, represents the effect of the initial
condition. We can show the remaining terms in Eq. 20 above represent the effects of the various boundary
conditions on the faces x′ = 0, L1, y′ = 0, L2, and z′ = 0, L3. For example, the terms involving x and u
become

−
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0
kx

(
T
∂2G
∂x′2 − G

∂2T
∂x′2

)
dx′dy′dz′dτ −

∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0
ρcu

∂

∂x′ (GT)dx′dy′dz′dτ

=
∫ t

0

∫ L3

0

∫ L2

0

∫ L1

0

(
kx

∂

∂x′

(
G
∂T
∂x′ − T

∂G
∂x′

)
− ρcu

kx
(GT)

) ∣∣∣∣
x′=L1

x′=0
dy′dz′dτ = IxL1 + Ix0, (23)

where Ix0 and IxL1 denote, respectively, the effects of the boundary conditions at the faces x = 0 and x = L1
and are given as

Ix0 = −
∫ t

0

∫ L3

0

∫ L2

0
kx

(
G
∂T
∂x′ − T

∂G
∂x′ − ρcu

kx
(GT)

) ∣∣∣∣
x′=0

dy′dz′dτ , (24)

IxL1 =
∫ t

0

∫ L3

0

∫ L2

0
kx

(
G
∂T
∂x′ − T

∂G
∂x′ − ρcu

kx
(GT)

) ∣∣∣∣
x′=L1

dy′dz′dτ . (25)

We define the expressions Iy0, IyL2 , Iz0, and IzL3 similarly and write

ρcT(x, y, z, t) = Ig + Iin + Ix0 + IxL1 + Iy0 + IyL2 + Iz0 + IzL3 . (26)

Notice that the above expressions still contain unevaluated integrations in the remaining variables and
time. It will be asumed that the boundary conditions are simple enough so that the remaining integrations
can be carried out and expressed in closed-form.
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4 Boundary conditions for the Green’s functions

We now consider issues concerning boundary conditions for the Green’s functions. In Eq. 26 various inte-
grals are given that represent the effects of the volumetric energy generation, and the initial and boundary
conditions. Let us examine a typical integrand such as that for Ix0

− kx

(
G
∂T
∂x′ − T

∂G
∂x′ − ρcu

kx
GT

) ∣∣∣∣
x′=0

. (27)

It involves T and its first partial derivative ∂T/∂x′ as well as G and its partial derivative ∂G/∂x′. In order
to satisfy boundary condition of the first, the second or the third kind, the integrand above must be made
so that the ratio of the coefficient of the ∂T/∂x′ term to that of T is equal to α/β, where α and β refer to
those that appear in the general boundary conditions.

α
∂T
∂x′ + βT = γ . (28)

This requirement leads to a homogeneous condition that G and its partial derivative must satisfy and makes
it possible that the integrand is now uniquely determined with the given boundary condition in terms of
the temperature T and its partial derivative.

We consider the three boundary condition cases:

(1) T is prescribed on x = 0 with T = T0 (boundary condition of the first kind)
We set the coefficient of ∂T

∂x′ in Eq. 27 equal to 0, i.e.,

kxG = 0 (29)

or simply

G = 0. (30)

With G = 0 it is seen that the integrand of Ix0 is uniquely determined with given T = T0 on x = 0 and

Ix0 =
∫ t

0

∫ L3

0

∫ L2

0
kxT0

∂G
∂x′ |x′=0dy′dz′dτ . (31)

(2) − ∂T
∂x =qx0/kx is prescribed on x=0 (boundary condition of the second kind)

We set the coefficient of the T term in (27) equal to 0. This leads to

kx
∂G
∂x′ + ρcuG = 0. (32)

It follows that

Ix0 = −
∫ t

0

∫ L3

0

∫ L2

0
Gqx0|x′=0dy′dz′dτ . (33)

(3) Boundary condition of the third kind
We consider now boundary condition of the type

α
∂T
∂x

+ βT = γ on x = 0. (34)

We first determine G so that the ratio of the coefficient of ∂T
∂x to that of T in the integrand given in Eq. 27

is equal to α/β
α

β
= −kxG

kx
∂G
∂x′ + ρcuG

(35)

or

kxα
∂G
∂x′ + (αρcu + kxβ)G = 0. (36)

This yields a linear, homogeneous expression in G and its normal derivative and simplifies the integrand
Ix0 which is then uniquely determined by the given boundary condition. It can be shown that the integral
Ix0 is now given by
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Table 2 Boundary conditions for Green’s functions at an x-boundary

B.C. Type B.C. on T B.C. on G B.C. on G∗

1st kind T is given G = 0 G∗ = 0
2nd kind DxT is given kxDxG + ρcuG = 0 kxDxG∗ + ρcuG∗ = 0
3rd kind αDxT + βT given αkxDxG + (αρcu + βkx)G = 0 αkxDxG∗ + (αρcu + βkx)G∗ = 0

where Dxdenotes partial differentiation with respect to x. Entries in column 4 are the same as in column 3 except G is
replaced by G∗

Ix0 =
∫ t

0

∫ L3

0

∫ L2

0

kxGγ
α

dy′dz′dτ . (37)

We treat the cases at a y- and a z-boundary similarly, for example, simply letting v or w to replace u and
letting y or z to replace x. The results are summarized in Table 2.

5 Construction of the Green’s functions

We shall illustrate in this section how to construct the Green’s functions. The Green’s function G is defined
in Eqs. 14 and 15, where it is regarded as a function of x′, y′, z′ and τ . It is known that three-dimensional
Cartesian Green’s functions may be expressed as products of one-dimensional Green’s functions [4]. We
thus consider here the one-dimensional Green’s function GX , as defined in Eqs. 14 and 15.

kx
∂2GX

∂x′2 + ρc
(
∂GX

∂τ
+ u

∂GX

∂x′

)
= −ρcδ(x − x′)δ(t − τ), t > τ , (38)

For t > τ , the right-hand side above actually vanishes, and GX is governed by the homogeneous equation,

kx
∂2GX

∂x′2 + ρc
(
∂GX

∂τ
+ u

∂GX

∂x′

)
= 0, t > τ . (39)

We shall characterize the Green’s functions as solutions of homogeneous equations that satisfy appropriate
initial conditions. We determine the initial conditions of GX and of G∗

X at τ = t (or less generally at τ = 0)
by integrating the respective nonhomogeneous equation with respect to τ from τ = t− to τ = t+, then
using the fact GX ≡ 0 for t < τ or G∗

X ≡ 0 for t > τ . Now integrating Eq. 38 and keeping only the leading
terms, we find

ρc(GX(x, t; x′, t+)− GX(x, t; x′, t−)) = −ρcδ(x − x′)
∫ t+

t−
δ(t − τ)dτ , (40)

which then gives

GX(x, t; x′, τ)|τ=t− = δ(x − x′). (41)

Here we have our initial time at t. For initial time at t = 0 in particular we have

GX(x, 0; x′, τ)|τ=0− = δ(x − x′). (42)

Next for G∗
X we obtain from Eqs. 16 and 17

kx
∂2G∗

X

∂x′2 − ρc
(
∂G∗

X

∂τ
+ u

∂G∗
X

∂x′

)
= −ρcδ(x − x′)δ(t − τ). (43)

For t < τ the right-hand side above vanishes and we have

kx
∂2G∗

X

∂x′2 − ρc
(
∂G∗

X

∂τ
+ u

∂G∗
X

∂x′

)
= 0, t < τ . (44)

Now integrating Eq. 43 with respect to τ from τ = t− to τ = t+, then using the fact G∗
X ≡ 0 for t > τ and

keeping only the leading terms yield
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G∗
X(x, t; x′, τ)|τ=t+ = δ(x − x′) (45)

and for t = 0

G∗
X(x, 0; x′, τ)|τ=0+ = δ(x − x′). (46)

The initial conditions given by Eqs. 42 and 46 will be used in the construction of the Green’s function GX
and G∗

X .
To find GX we write it as a product

GX(x, t; x′, τ) = FX(x′)KX(τ ), (47)

where FX is regarded as a function of x′ with the parameter x and KX is regarded as a function of τ with
the parameter t. Substituting Eq. 47 in Eq. 39 and separating the variables leads to the ordinary differential
equations

kxF ′′
X + ρcuF ′

X = −λ2FX , (48)

ρcK′
X = λ2KX , (49)

where λ2 are the spatial eigenvalues and F = FX are the corresponding eigenfunctions, regarded as func-
tions of x′ and subjected to the homogeneous boundary conditions of the kind that GX satisfies at x′ = 0
and x′ = L1. We note that the appropriate homogeneous boundary conditions for GX are listed in the
third column of Table 2 and the precise entry to be used depends on the type of boundary conditions that
T satisfies at x′ = 0 and x′ = L1.

Similarly for the adjoint Green’s function G∗
X we write

G∗
X(x, t; x′, τ) = HX(x′)K̃X(t). (50)

Substituting Eq. 50 in Eq. 44 yields

kxH′′
X − ρcuH′

X = −λ̃2HX , (51)

ρcK̃′
X = −λ̃2K̃X , (52)

where HX(x′) satisfies homogeneous boundary conditions at x′ = 0 and at x′ = L1 of the same kind that
G∗

X does, which are listed in the fourth column of Table 2, with the precise entry depends on the type of
boundary conditions that T satisfies at x′ = 0 and x′ = L1.

For eigenfunctions FX(x′) as functions of x′ we seek solutions of the form

FX(x′) = eγ x′
(53)

Substituting in Eq. 48 yields

γ = γ1, γ2 = −ρcu
2kx

± κ

L1
i, (54)

where

κ = (4kxλ
2 − (ρcu)2)1/2

2kx
L1. (55)

We write the solution for FX(x′) as

FX(x′) = A1P1(x
′)+ A2P2(x′), (56)

where A1 and A2 are arbitrary constants and P1(x′) and P2(x′) are the two linearly independent particular
solutions of Eq. 48 given by

P1(x
′) = exp− ρcux′

2kx sin(κ(x′ − L1)/L1), (57)

P2(x′) = exp− ρcux′
2kx cos(κ(x′ − L1)/L1). (58)
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We wish to determine the constants A1 and A2 or the ratio thereof such that nontrivial solutions of Eq. 48
exist that satisfy the homogeneous boundary conditions at x′ = 0 and x′ = L. We notice that we still have λ
as a parameter in the proposed solution for FX(x′) in Eq. 48 above. Applying the two boundary conditions
at x′ = 0 and x′ = L1 thus determines the eigenvalue λ and the ratio of A1 to A2.

As an example, let us assume that the boundary conditions on T is of the second kind at x′ = 0 and of
the first kind at x′ = L1. From Table 2 the corresponding boundary conditions on G, G∗ and hence those
on F and H are all known.

At x′ = 0, kxF ′
X + ρcuFX = 0, H′

X = 0, (59)

At x′ = L1, FX = 0, HX = 0. (60)

We take

A2 = 0, A1 = 1, (61)

so

FX(x′) = P1(x
′). (62)

It is seen that the chosen FX(x′) already satisfies the boundary conditon at x′ = L1. Substituting it in the
boundary condition at x′ = 0 leads to the transcendental equation

(ρcu)tan
(

1
2kx

(4k2
xλ

2 − (ρcu)2)1/2
1

L1

)
= (

4k2
x − (ρcu)2

)1/2, (63)

which is the equation that determines the eigenvalues λ2. Equation 63 may be rewritten as

tan(κ) = κ/D, D = ρcuL1

2kx
= P/2, (64)

where P = 2D is the Péclet number in heat transfer.
For the H-problem we proceed similarly and obtain

HXn(x′) = e
ρcux′
2kx sin(κn(x′ − L1)/L1). (65)

We state that, by applying the boundary conditions on the general solution for HX at x′ = 0 and at x′ = L1,
the same equation for the eigenvalues λ̃ as Eq. 64 is obtained. Thus the F-problem and the H-problem have
the same set of eigenvalues. The H-eigenfunctions given in Eq. 65 above are, however, different from the
F-eigenfunctions. It can be proved that, in general, the eigenvalue problems for FX(x′) and HX(x′), being
the adjoint problem to each other, share a same set of eigenvalues, here given by λ̃2

n = λ2
n, that tend to

infinity as n goes to infinity. Furthermore, these eigenfunctions (FXn(x′)) and (HXn(x′)) are “bi-orthogonal”,
in the sense that

〈FXm(x′), HXp(x′)〉 ≡
∫ L1

0
FXm(x′)HXp(x′)dx′ = 0, m 	= p (66)

and are expected to be “complete” each in the sense
∞∑

n=1

FXn(x′)HXn(x)
NXn

= δ(x − x′), (67)

∞∑
n=1

HXn(x′)FXn(x)
NXn

= δ(x − x′), (68)

which for simplicity will be assumed true here. Proofs of the completeness of eigenfunctions of second-
order differential equations can be established using variational methods (see, e.g., B. Friedman, 1956). We
note also that NXn above denotes the “inner product” of FXn and HXn

NXn = 〈FXn(x′), HXn(x′)〉. (69)
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The solutions for time components KXn(τ ) and K̃Xn(τ ) are determined from Eqs. 49 and 52 as

KXn(τ ) = C1(t)× e
λ2

nτ
ρc , τ < 0, (70)

K̃Xn(τ ) = C2(t)× e− λ2
nτ
ρc τ > 0, (71)

where C1(t) and C2(t) are chosen as

C1(t) = e− λ2
nt
ρc , (72)

C2(t) = e
λ2

nt
ρc , (73)

Thus,

KXn(t, τ) = e− λ2
n(t−τ )
ρc , (74)

K̃Xn(t, τ) = e− λ2
n(τ−t)
ρc , (75)

which satisfy Eqs. 49 and 52, respectively, when regarded as functions of τ and show the dependence on
the parameter.

The Green’s functions GX(x, t; x, τ) and G∗
X(x, t; x′, τ) are constructed as

GX(x, t; x′, τ) =
∞∑

n=1

e− λ2
n(t−τ )
ρc

FXn(x′)HXn(x)
NXn

, τ < t, (76)

G∗
X(x, t; x′, τ) =

∞∑
n=1

e
λ2

n(t−τ )
ρc

HXn(x′)FXn(x)
NXn

, τ > t. (77)

We point out that the initial conditions are satisfied at τ = t for then

GX(x, τ , x′, τ) =
∞∑

n=1

FXn(x′)HXn(x)
NXn

, (78)

G∗
X(x, τ , x′, τ) =

∞∑
n=1

HXn(x′)FXn(x)
NXn

. (79)

It is seen that the initial conditions at t = τ of GX and of G∗
X are both satisfied by using the completeness

properties given by Eqs. 67 and 68.
The one-dimensional Green’s functions GY , GZ, G∗

Y and G∗
Z are constructed similarly and the three-

dimensional Green’s functions G and G∗ are formed by the products GX GYGZ and G∗
XG∗

YG∗
Z, respectively.

For example we have

G(x, y, z, t; x′, y′, z′, τ) =
∞∑

p=1

∞∑
m=1

∞∑
n=1

e− (λ2
n+μ2

m+ν2
p)(t−τ )

ρc

×FXn(x′)HXn(x)
NXn

FYm(y′)HYm(y)
NYm

FZp(z′)HZp(z)
NZp

, τ < t, (80)

with a similar expression for G∗. It is seen that the expression for G involves the eigenvalues μm and νp as
well as the functions F and H and the norms NYm and NZp in the y- and z-directions.

6 Example problems and numerical results

We shall consider two example problems in this section and shall present some related numerical results.
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6.1 Problem 1

We consider here a one-dimensional problem on the interval 0 < x < L. The boundary conditions at both
x = 0 and x = L are of the first kind, with T = T0 	= 0 at x = 0 and T = 0 at x = L. This problem is
referred to as the XU11B10 problem in the notations of [4].

We are interested in obtaining the steady-state solutions Ts(x) using the Green’s function method and
compare them with those we shall obtain directly from solving the governing equation for T that is simpli-
fied by dropping the terms that depend on time t. Writing Ts(x) for the steady-state solution T(x, ∞), we
have for Ts(x)

kx
d2TS(x)

dx2 − ρcu
dTs(x)

dx
= 0. (81)

Solving Eq. 81 subjected to the boundary conditions at x = 0 and x = L, we have

Ts(x)
T0

= 1 − e−2D(1− x
L )

1 − e−2D . (82)

This expression will be used to generate exact solutions.
The Green’s functions for the present problem can be written as

G(x, t; x′, τ) =
∞∑

n=1

e− R2
nα(t−τ )

L2
FXn(x′)HXn(x)

NXn
, (83)

where

FXn(x′) = e−D x′
L sin

(
κn(x′ − L)

L

)
, (84)

HXn(x) = eD x
L sin

(
κn(x − L)

L

)
, (85)

NXn = L
2

, α = kx/(ρc), (86)

R2
n = λ2

nL2 = κ2
n + D2, κn = (R2

n − D2)1/2. (87)

We note that with the functions FXn and HXn chosen above the boundary conditions at x = L (x′ = L)
are already satisfied for all κ . The boundary conditions at x = 0 (x′ = 0) are satisfied when

sin(κ) = 0. (88)

Thus

κ = nπ (89)

and all κ ′s are determined and no numerical work is necessary.
The solution for the temperature T(x, t) is represented in terms of the Green’s function and the boundary

data at x = 0 as given in Sect. 3 is

T(x, t) = IX0 =
∫ t

0
kxT0

∂G
∂x′ |x′=0dτ (90)

We differentiate G in Eq. 83 with respect to x′ and then evaluate it at −x′ (outward pointing normal) = 0

− ∂G(x, t; 0, τ)
∂x′ = 2π

L2 eDx/L
∞∑

n=1

e−R2
n
α(t−τ )

L2 n sin(nπx/L). (91)

Using Eq. 91 in Eq. 90, we find the solution for the temperature T(x, t)

T(x, t) = 2T0eDx/L
∞∑

n=1

(
1 − e−R2

n
αt
L2

) (nπ) sin(nπx/L)
R2

n
. (92)
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Table 3 Calculations for the steady state temperature Ts(x) for the XU11B10 case. Six terms in the infinite series are used

No. of terms x/L D = −1 D=0.005 D = 1

T series T exact T series T exact T series T exact

6 0.00 0.000 1.000 0.000 1.000 0.000 1.000
6 0.01 0.116 0.977 0.120 0.990 0.118 0.997
6 0.25 0.523 0.545 0.723 0.751 0.863 0.898
6 0.50 0.300 0.269 0.553 0.501 0.816 0.731
6 0.75 0.124 0.102 0.299 0.251 0.556 0.455
6 1.00 0.000 0.000 0.000 0.000 0.000 0.000

Table 4 Calculations for the steady state temperature Ts(x) for the XU11B10 case. 250 terms in the infinite series are used

No. of terms x/L D = −1 D=0.005 D = 1

T series T exact T series T exact T series T exact

250 0.00 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000
250 0.01 0.968927 0.977099 0.981794 0.990049 0.988500 0.996838
250 0.25 0.545924 0.544946 0.752194 0.750937 0.900076 0.898464
250 0.50 0.269714 0.268941 0.502526 0.501250 0.733158 0.731059
250 0.75 0.100936 0.101536 0.249663 0.250938 0.452365 0.455054
250 1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

The steady-state portion of this solution is

Ts(x) = 2T0eDx/L
∞∑

n=1

(nπ) sin(nπx/L)
R2

n
. (93)

Calculations for the steady state temperature based on six-term truncations of the infinite series are
given in Table 3 for D = −1, 0.01, and 1 and for x/L values of 0, 0.01, 0.25, 0.5, 0.75 and 1, 0, and 1. The
exact solutions based on Eq. 82 are also shown. Similar calculations for infinite series truncated after 250
terms are given in Table 4.

In the Green’s function method presented here, solutions for the temperatures are expressed as integrals
involving the Green’s functions and prescribed data. Approximations to the solutions are obtained when
the infinite series are truncated after retaining just a finite number of terms. Convergence concerns the
issue that, when more and more terms in the infinite series are included in the approximations, whether
the errors become smaller and smaller.

The steady-state solution Ts(x) represented by Eq. 98 converges well for large n and for all x 	= 0 or L,
i.e., away from the boundary. The solution for Ts at x = L (Ts = 0) is, in fact, exact. Convergence is poor
as x = 0 is approached with many oscillations. Also, the solution given by Eq. 93 at x = 0 appears to be
zero, which contradicts the fact that TS is prescribed at x = 0 to be T0 which need not be zero.

The above contradiction may be explained by resorting to the theory of Fourier series. The solution Ts

given here as a function of x is in fact discontinuous at x = 0 and the limit of Ts as x tends to 0, (which
by definition is the boundary condition at x = 0), is not equal to the value of Ts evaluated at x = 0. More
specifically we can show that by writing Ts(x) as

Ts(x) = 2T0eDx/LS(x). (94)

The infinite series S(x) has a “dominant” part S1(x)(in the sense that S − S1 as a function of x converges
uniformly and hence to an everywhere continuous function of x. This S1(x), given by

S1(x) =
∞∑

n=1

sin(nπx/L)
nπ

, (95)

converges slowly, but has a closed-form sum given by



J Eng Math (2007) 57:115–132 127

S1(x) = L − x
2L

, 0 < x < L. (96)

Thus, as x goes to zero, S1 as a function of x goes to 1/2 and Ts as a function of x goes to T0.

6.2 Problem 2

We consider now a three-dimensional heat-conduction problem with solid flow. The solid velocity is
assumed in the x-direction, �u = (u, 0, 0). The solid is taken to be a cube with side length L and 0 < x <
L, 0 < y < L and 0 < z < L. The boundary conditions are

On x = 0, kx
∂T
∂x

= −q0 = constant, On x = L, T = 0,

On y = 0, T = 0, On y = L,
∂T
∂y

= 0,

On z = 0, T = 0, On z = L,
∂T
∂z

= 0. (97)

Also we have the initial condition

T(x, y, z, 0) = 0. (98)

We shall assume, for simplicity, that physical parameters such as k, ρ, c and α, etc, are the same in the x-, y-,
and z-direction. Furthermore, we shall assume that D 	≥ 1 so that the term involving hyperbolic functions is
absent from the series for the Green’s functions. This problem is known as the XU21B10Y12B00Z12B00T0
problem in the notations of [4].

The three-dimensional Green’s function G is written as a product of the one-dimensional Green’s
functions,

G(x, x′, y, y′z, z′, σ) = GX(x, x′, σ)GY(y, y′, σ)GZ(z, z′, σ), (99)

where use has been made of the fact that the dependence of the Green’s functions on t and τ is only
through some σ = t − τ . We shall refer to σ as “cotime”.

We have

GX(x, x′, σ) =
∞∑

n=1

e−λ2
nασ

FXn(x′)HXn(x)
NXn

, (100)

GY(y, y′, σ) =
∞∑

m=1

e−μ2
mασ

FYm(y′)HYm(y)
NYm

, (101)

GZ(z, z′, σ) =
∞∑

p=1

e−ν2
pασ

FZp(z′)HZp(z)
NZp

, (102)

where

FXn(x′) = e− ρcux′
2kx sin(κ(x′ − L)/L), (103)

HXn(x) = e
ρcux
2kx sin(κ(x − L)/L), (104)

FYm(y′) = sin(βy′/L), HYm(y) = sin(βy/L), (105)

βm = (2m − 1)(π/2), (106)

FZp(z′) = sin(ηz′/L), HZp(z) = sin(ηz/L), (107)

ηp = (2p − 1)(π/2). (108)
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We recall that in the x-direction, λ2 are related to κ2 by Eq. 55. This fact enables us to write the Green’s
function GX as

GX(x, x′, σ) = 2
L

e
Dx
L

∞∑
n=1

e−R2
n
ασ

L2 × R2
n sin(κ L−x

L ) sin(κn)

R2
n − D

, (109)

where

R2
n = λ2

nk/L2 = κ2 + D2, tan(κn) = κn/D, D = uL
2α

. (110)

We mention that the roots κ of Eq. 64 are all real for D < 1.0. Hence κ2 are all real and positive and they
may be arranged as an increasing sequence of n. For D = 1 the first root (the smallest in absolute value)
for κ1 is zero and there is no non-trivial eigenfunction. For D > 1, there exist a pair of purely imaginary
roots for κ , leading to a real negative eigenvalue κ2. The corresponding spatial eigenfunctions F and H are
now in the form of hyperbolic functions instead of the trigonometric functions. The quantities λ2, however,
remain real and positive, consistent with the time-decaying nature of the solutions to steady state solutions
for large t. We shall assume that D 	> 1 so that this extraneous root for κ associated with the hyperbolic
eigenfunction does not arise. For details, please see [6, 7].

In the y-direction, μ2 are related to γ 2 by

γ 2 = μ2L2

k
. (111)

This enables us to write GY(y, y′, σ) as

GY(y, y′, σ) = 2
L

∞∑
m=1

e−γ 2
m
ασ

L2 sin
(
γm

y
L

)
sin

(
γm

y′

L

)
. (112)

According to Sect. 3 the temperature T(x, y, z, t) is given by

T(x, y, z, t) = αq0

k

∫ t

σ=0
GX(x, 0, σ)

∫ L

y′=0
Gy(y, y′, σ)dy′

∫ L

z′=0
GZ(z, z′, σ)dz′dy′dσ . (113)

We carry out the y′- and z′-integration and obtain
∫ L

y′=0
GY(y, y′, σ)dy′ =

∫ L

y′=0

2
L

∞∑
m=1

e−γ 2
m
ασ

L2 sin

(
γm

y
L

)
sin

(
γm

y′

L

)
dy′

= 2
∞∑

m=1

e−γ 2
m
ασ

L2 sin

(
γm

y′

L

)
/γm (114)

plus a similar expression from the z′-integration. Next we obtain, upon performing the σ -integration in
Eq. 114

T(x, y, z, t) = −Tc.t.(x, y, z, 0)+ Tc.t.(x, y, z, t), (115)

where

Tc.t.(x, y, z, t)
q0L/k

= −8e
Dx
L

∞∑
n=1

∞∑
m=1

∞∑
p=1

e−(R2
n+γ 2

m+η2
p)

αt
L2 × R2

n sin(κn
L−x

L ) sin(κn) sin(γm
y
L ) sin(ηp

z
L )

(R2
n − D)(R2

n + γ 2
m + η2

p)γmηp
. (116)

The last equation has a c.t. subscript which we use to denote “complementary transient”.
The complementary transient converges exponentially for all time except for t = 0. At time zero, it gives

the steady-state solution. The first term on the right of Eq. 115 is the steady-state term. A direct evaluation
of the steady-state term from Eq. 116 shows slow convergence, particularly near x = 0. Several means are
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Table 5 Numerical results for the complementary transient for a cube are presented

D x/L y/L z/L Dim. t Total no. of terms Tc.t.

−0.50 0.50 1.00 1.00 0.0020 20838 −0.1187766466
−0.50 0.50 1.00 1.00 0.0030 11273 −0.1187766466
−0.50 0.50 1.00 1.00 0.0120 1389 −0.1187371733
−0.50 0.50 1.00 1.00 0.1000 52 −0.0789037698
−0.50 0.50 1.00 1.00 0.3000 9 −0.0152339528
−0.50 0.50 1.00 1.00 1.0000 2 −0.0000381705

0.50 0.50 1.00 1.00 0.0020 20838 −0.3088397305
0.50 0.50 1.00 1.00 0.0030 11321 −0.3088397305
0.50 0.50 1.00 1.00 0.0120 1389 −0.3087720469
0.50 0.50 1.00 1.00 0.1000 52 −0.2290562314
0.50 0.50 1.00 1.00 0.3000 9 −0.0655029313
0.50 0.50 1.00 1.00 1.0000 2 −0.0006722472

Solution with 10 place accuracy are obtained for the location x/L = 0.5, y/L = z/L = 1 and for D = −0.5 and 0.5.

Table 6 Effects of varying the number of terms in the series of the complementary transient evaluated at t = 0 for
D = −0.5, x/L = 0.5, y/L = z/L = 1

D x/L y/L z/L t mmax nmax pmax Tc.t.

−0.50 0.50 1.00 1.00 0.0000 25 15 15 −0.1189600716
−0.50 0.50 1.00 1.00 0.0000 25 25 25 −0.1189567530
−0.50 0.50 1.00 1.00 0.0000 100 25 25 −0.1187765234
−0.50 0.50 1.00 1.00 0.0000 200 25 25 −0.1187766312
−0.50 0.50 1.00 1.00 0.0000 200 50 50 −0.1187766317
−0.50 0.50 1.00 1.00 0.0000 250 50 50 −0.1187766542

available to improve the convergence. One is to use time-partitioning [8]. This uses the short cotime Green’s
functions, as well as the long cotime forms given above. Another approach is to use a known temperature on
the left-hand side of Eq. 116. Two types of temperatures are known. One is for location away from the heated
surface (x = 0 here). The second is for the heated surface or near it but away from y = 0 or z = 0; at these
locations and at sufficiently small dimensionless times the temperature is one-dimensional which is known.

Table 5 displays some results for the complementary transient solution given by Eq. 116 for the location
of x/L = 0.5, y/L = z/L = 1 and two different values of D. Ten digit accuracy is given. Notice that as the
dimensionless time is decreased that the values go to a contant, which is actually the steady state. If the
dimensionless time is made smaller, then more terms are needed.

Table 6 shows the effect of varying the number of terms in the series for the complemetary transient
evaluated at t = 0 for D = 0.5, x/L = 0.5, y/L = z; /L = 1.

7 Discussions and concluding remarks

We have studied in this paper heat conduction in a rectangular parallelepiped that is in steady motion
relative to a fluid. The solid is assumed orthotropic with (unequal) thermal conductivities kx, ky, and kz.
It is also assumed that the principal directions of the thermal conductivities coincide with the coordinate
axes. It is seen that no extra effort is required to treat this orthotropic case than the isotropic case. We
mention also that there exists a coordinate transformation that transforms the governing equation for the
orthotropic case to one for an isotropic case with an equivalent thermal conductivity k = (kxkykz)

1/3.
It is seen that the consideration of the solid motion introduces lower-order derivative terms in the

governing equation and causes the spatial part of the equation to be non-self-adjoint. The classical heat
equation must be modified to accommodate this change. We find it necessary to consider both the Green’s
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function G and its adjoint function G∗. Also, G and G∗ satisfy in general different but “commitant” bound-
ary conditions which are studied here as they are needed for establish certain theoretical properties such
as the bi-orthogonality of the sets of the spatial eigenfunctions F ′s and H′s.

As we have indicated earlier, solutions for the temperature problems here are expected to converge
rapidly in the interior of the region. Near a boundary point we have a different story. Solutions near a
boundary point may fail to converge, as we have seen in example Problem 1 above near x = 0. This is a
Fourier series phenomenon. The linear function with T = T0 at x = 0 and T = 0 at x = L is extended as an
odd, 2L-periodic function of x outside of the interval 0 < x < L with a discontinuity at x = 0, i.e., a jump
in T from −T0 to T0 as x crosses x = 0. The full Fourier series at x = 0 converges slowly but ultimately
to the average of the two end values L0 and −L0 which is zero while away from x = 0 the Fourier series
converge to the value of the function about which the Fourier series is developed. The nonconvergence
of the Fourier series at x = 0 and the associated oscillations are just a part of the well-known Gibbs’
phenomenon [1, p. 745].

We already mentioned that the method of time-partitioning can be used to improve the convergence of
the solution of Problem 2 above. This is actually a more general method. In this method, the τ integration
is rewritten as an integration with respect to the dummy variable σ = t − τ . For small values of σ , which we
refer to as a “cotime” we use the small time Green’s functions, for instance, Green’s functions of the Laplace
transform type and for large values of σ we use the large time Green’s functions of the kind obtained by
the method of separation of variables. See the recent work by the present authors and others in [8].

We mention finally that, as we indicated in [4], it is known that there exists a coordinate transformation
that transforms a solution T(�x, t) of the governing equation here with solid flow to a solution W(�x, t) of the
standard heat equation. Thus the problem that we have treated here could be obtained by: (i) transform
the govening equations along with the initial and boundary conditions from the original solution space to
the transformed space: (ii) solve the initial-boundary-value problem for the classical heat equation in the
transformed space using the transformed data; and (iii) transform the solution obtained in the transformed
space back to the original solution space. This is no easy task, especially in the coordinate transformation
to and from the solution space. In our work here we avoided the two transformations by staying with the
original solution space, thus showing the existence of this transformation is not essential for the solution
of this problem. The price that we paid here is that we now have to solve a more complicated set of equa-
tions. One of us has in fact attempted to follow the former approach to solve some simple boundary-value
problems with solid flow [7, 9]. In view of the fact that so little has been done on this subject, however, it
seems premature to draw conclusion as to which method is the more superior at this stage.

Appendix A The reciprocity property of G and G*

We shall derive in this Appendix the so-called reciprocity property of the Green’s functions G and G∗
given in Eqs. 12 and 13.

We rewrite (7) for G(�x, t; �x0, t0) where it is assumed that t > t0 and multiply it with G∗(�x, t; �x1, t1) where
it is assumed that t < t1

kxG∗ ∂2G
∂x2 + kyG∗ ∂2G

∂y2 + kzG∗ ∂2G
∂z2 − ρc

(
G∗ ∂G

∂t
+ uG∗ ∂G

∂x
+ vG∗ ∂G

∂y
+ wG∗ ∂G

∂z

)

= −ρcG∗δ(�x − �x′)δ(t − τ), t > τ . (117)

Next we rewrite Eq. 10 for G∗(�x, t; �x1, t1) and multiply it with G(�x, t; �x0, t0)

kxG
∂2G∗

∂x2 + kyG
∂2G∗

∂y2 + kzG
∂2G∗

∂z2 + ρc
(

G
∂G∗

∂t
+ uG

∂G∗

∂x
+ vG

∂G∗

∂y
+ wG

∂G∗

∂z

)

= −ρcGδ(�x − �x′)(t − τ), t < τ . (118)



J Eng Math (2007) 57:115–132 131

We subtract these two equations and integrate the resulting equation with respect to t from −∞ to t+1 , with
respect to z from 0 to L3, with respect to y from 0 to L2, and with respect to x from 0 to L1. We thus have

II(G, G∗) ≡
∫ t+1

−∞

∫ L3

0

∫ L2

0

∫ L1

0

(
kx

(
G∗ ∂2G

∂x2 − G
∂2G∗

∂x2

)

+ ky

(
G∗ ∂2G

∂y2 − G
∂2G∗

∂y2

)
+ kz

(
G∗ ∂2G

∂z2 − G
∂2G∗

∂z2

))
dxdydzdt

−ρc
∫ t+1

−∞

∫ L3

0

∫ L2

0

∫ L1

0

((
G∗ ∂G

∂t
+ G

∂G∗

∂t

)
+ u

(
G∗ ∂G

∂x
+ G

∂G∗

∂x

)

+ v
(

G∗ ∂G
∂y

+ G
∂G∗

∂y

)
+ w

(
G∗ ∂G

∂z
+ G

∂G∗

∂z

) )
dxdydzdt

= −ρc
∫ t+1

−∞

∫ L3

0

∫ L2

0

∫ L1

0
G∗(�x, t; �x1, t1)δ(�x − �x0)δ(t − t0)dxdydzdt

+ρc
∫ t+1

−∞

∫ L3

0

∫ L2

0

∫ L1

0
G(�x, t; �x0, t0)δ(�x − �x1)δ(t − t1)dxdydzdt. (119)

The t-integration of the term involving the t-derivatives of G and G∗ on the left of Eq. 119 can be carried
out to yield

−ρc
∫ t+1

−∞

∫ L3

0

∫ L2

0

∫ L1

0

(
G∗ ∂G

∂t
+ G

∂G∗

∂t

)
dxdydzdt

= −ρc
∫ L3

0

∫ L2

0

∫ L1

0
G∗(�x, t; �x1, t1)G(�x, t; �x0, t0)|t1−∞dxdydz. (120)

The integrand above vanishes at the lower limit of intgration because G does and vanishes at the upper
limit because G∗ does.

The remaining terms in II(G, G∗) on the left-hand side of Eq. 119, which is a bilinear form in G and G∗
as defined, all vanish. This is due to the fact that at the spatial boundary both G and G∗ satisfy the same
homogeneous boundary conditions and cancellations occur. Details of the arguments will be omitted here.

Thus, from the right-hand side of Eq. 120 above we obtain

G∗(�x0, t0; �x1, t1) = G(�x1, t1; �x0, t0), (121)

which leads to Eq. 13. Equation 12 follows by using the definition of the adjoint function G∗.
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